




1

2 A new complex triterpenoid saponin from *Samanea saman* with haemolytic  
3 activity and adjuvant effect4 **Q1** Antony de Paula Barbosa, Bernadete Pereira da Silva, José Paz Parente \*5 *Laboratório de Química de Plantas Medicinais, Núcleo de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP  
6 21941-971 Rio de Janeiro, Brazil*

## ARTICLE INFO

## Article history:

Received 16 March 2012

Received in revised form 15 June 2012

Accepted 20 June 2012

Available online xxx

## Keywords:

*Samanea saman*

Leguminosae

Complex triterpenoid saponin

Haemolytic activity

Adjuvant effect

## ABSTRACT

A new complex triterpenoid saponin was isolated from the stem bark of *Samanea saman* by using chromatographic methods. Its structure was established as 3-[(2-O- $\beta$ -D-glucopyranosyl- $\beta$ -D-glucopyranosyl)oxy]-2,23-dihydroxy-(2 $\beta$ ,3 $\beta$ ,4 $\alpha$ )-olean-12-en-28-oic acid 0- $\beta$ -D-glucopyranosyl-(1  $\rightarrow$  3)-O-[O- $\beta$ -D-glucopyranosyl-(1  $\rightarrow$  4)]-O-6-deoxy- $\alpha$ -L-mannopyranosyl-(1  $\rightarrow$  2)-6-O-[4-O-[(2E,6S)-2,6-dimethyl-1-oxo-2,7-octadienyl]-6-deoxy- $\alpha$ -L-mannopyranosyl)oxy]- $\beta$ -D-glucopyranosyl ester (**1**). Structural elucidation was performed using detailed analyses of  $^1$ H and  $^{13}$ C NMR spectra including 2D NMR spectroscopic techniques and chemical conversions. The haemolytic activity of the saponin was evaluated using *in vitro* assays, and its adjuvant potential on the cellular immune response against ovalbumin antigen was investigated using *in vivo* models.

© 2012 Published by Elsevier B.V. on behalf of Phytochemical Society of Europe.

7

## 1. Introduction

9 *Samanea saman* (Jacq.) Merr. (Leguminosae), commonly known  
10 as raintree, is native to tropical America, extending from southern  
11 Mexico into northern South America. The raintree was long ago  
12 introduced to many other tropical countries as a street and shade  
13 tree. The pods ripen during the dry period and feed cattle and hogs.  
14 The leaves are used as a livestock forage supplement for cattle,  
15 sheep and goats. *S. saman* has been recognized as an important  
16 leguminous tree species for animal feeding (Durr, 2001).

17 *S. saman* has been used in traditional medicine as a remedy for  
18 the treatment of different diseases. In Venezuela, the root  
19 decoction is used in hot baths for stomach cancer. The leaf  
20 infusion is used as a laxative. In the West Indies, seeds are chewed  
21 for sore throat. The alcoholic extract of the leaves inhibits  
22 *Mycobacterium tuberculosis*. In Colombia, the fruit decoction is  
23 used as a sedative (ILDIS, 2005). Recently, the antimicrobial  
24 activity of the aqueous extract of this plant was investigated and  
25 showed inhibitory activity against *Staphylococcus aureus*, *Candida*  
26 *albicans* and *Escherichia coli*. Phytochemical screening of the plant  
27 revealed the presence of tannins, flavonoids, saponins, steroids,  
28 cardiac glycosides and terpenoids (Prasad et al., 2008).

29 According to the literature, complex triterpenoid saponins are  
30 shown to possess several physiological properties depending on

their chemical structures, such as haemolytic activity and capacity  
31 for alteration of membrane permeability (Oda et al., 2000).  
32 Additionally, these compounds have been reported to possess  
33 therapeutic potential for immune system modulation through  
34 different mechanisms (Lacaille-Dubois and Wagner, 1996). As part  
35 of our ongoing efforts in discovering potentially bioactive  
36 compounds from natural sources, we describe the structural  
37 elucidation and evaluation of the haemolytic activity and  
38 immunological adjuvant effect of a new complex triterpenoid  
39 saponin isolated from the bark of *S. saman*.

## 2. Results and discussion

41 The MeOH extract of *S. saman* was suspended in H<sub>2</sub>O and  
42 partitioned with n-BuOH. The n-BuOH extract was subjected to  
43 chromatographic purification steps to afford compound **1**, a  
44 colorless amorphous powder, which was positive to Lieber-  
45 mann-Burchard test. It revealed a quasi-molecular weight ion  
46 peak at *m/z* 1780, 9013 [M+Na]<sup>+</sup> in the positive-ion mode MALDI-  
47 TOFMS. In the  $^{13}$ C NMR spectrum, eighty-two carbon signals  
48 observed belong to ten methyl groups, eighteen methylene groups  
49 (six of which were oxygenated), forty-three methine groups  
50 (twenty-nine of which were oxygenated) and eleven quaternary  
51 carbon atoms (three of which were oxygenated). The number of  
52 hydrogen atoms attached to each individual carbon atom was  
53 calculated by DEPT-45, DEPT-90 and DEPT-135 spectra. On  
54 the basis of the above mentioned MS and  $^{13}$ C NMR spectral data  
55 (Table 1), compound **1** was assumed to be a triterpenoid saponin

\* Corresponding author. Tel.: +55 21 2562 6791; fax: +55 21 2562 6513.

E-mail address: [parente@pq.cnpq.br](mailto:parente@pq.cnpq.br) (J.P. Parente).

**Table 1**<sup>13</sup>C NMR data of compound 1 (75 MHz, pyridine-d<sub>5</sub>).

| Position | $\delta$ C       | DEPT <sup>a</sup> | Position          | $\delta$ C | DEPT <sup>a</sup> |
|----------|------------------|-------------------|-------------------|------------|-------------------|
| 1        | 44.5             | CH <sub>2</sub>   | $\beta$ -D-GlcI   | 1          | 103.0             |
| 2        | 70.0             | CH                | 2                 | 83.6       | CH                |
| 3        | 83.2             | CH                | 3                 | 78.1       | CH                |
| 4        | 42.2             | C                 | 4                 | 71.1       | CH                |
| 5        | 47.3             | CH                | 5                 | 78.0       | CH                |
| 6        | 18.9             | CH <sub>2</sub>   | 6                 | 62.9       | CH <sub>2</sub>   |
| 7        | 33.7             | CH <sub>2</sub>   | $\beta$ -D-GlcII  | 1          | 105.8             |
| 8        | 39.5             | C                 | 2                 | 76.7       | CH                |
| 9        | 48.3             | CH                | 3                 | 78.4       | CH                |
| 10       | 37.2             | C                 | 4                 | 71.4       | CH                |
| 11       | 23.3             | CH <sub>2</sub>   | 5                 | 78.4       | CH                |
| 12       | 123.4            | CH                | 6                 | 62.9       | CH <sub>2</sub>   |
| 13       | 143.0            | C                 | $\beta$ -D-GlcIII | 1          | 95.6              |
| 14       | 41.8             | C                 | 2                 | 76.8       | CH                |
| 15       | 27.1             | CH <sub>2</sub>   | 3                 | 79.1       | CH                |
| 16       | 23.3             | CH <sub>2</sub>   | 4                 | 71.4       | CH                |
| 17       | 47.4             | C                 | 5                 | 77.3       | CH                |
| 18       | 41.1             | CH                | 6                 | 66.9       | CH <sub>2</sub>   |
| 19       | 41.9             | CH <sub>2</sub>   | $\beta$ -D-GlcIV  | 1          | 105.7             |
| 20       | 28.8             | C                 | 2                 | 75.7       | CH                |
| 21       | 32.4             | CH <sub>2</sub>   | 3                 | 78.6       | CH                |
| 22       | 30.3             | CH <sub>2</sub>   | 4                 | 71.4       | CH                |
| 23       | 66.8             | CH <sub>2</sub>   | 5                 | 78.4       | CH                |
| 24       | 14.6             | CH <sub>3</sub>   | 6                 | 62.2       | CH <sub>2</sub>   |
| 25       | 16.1             | CH <sub>3</sub>   | $\beta$ -D-GlcV   | 1          | 106.6             |
| 26       | 17.2             | CH <sub>3</sub>   | 2                 | 76.4       | CH                |
| 27       | 26.0             | CH <sub>3</sub>   | 3                 | 78.6       | CH                |
| 28       | 174.7            | C                 | 4                 | 71.4       | CH                |
| 29       | 29.5             | CH <sub>3</sub>   | 5                 | 78.4       | CH                |
| 30       | 23.9             | CH <sub>3</sub>   | 6                 | 62.9       | CH <sub>2</sub>   |
| MT       | $\alpha$ -L-Rhal | 1                 | 101.9             | CH         |                   |
| 1        | 168.0            | C                 | 2                 | 70.7       | CH                |
| 2        | 128.6            | C                 | 3                 | 82.2       | CH                |
| 3        | 144.1            | CH                | 4                 | 79.1       | CH                |
| 4        | 23.9             | CH <sub>2</sub>   | 5                 | 69.2       | CH                |
| 5        | 41.8             | CH <sub>2</sub>   | 6                 | 18.9       | CH <sub>3</sub>   |
| 6        | 72.4             | C                 | $\alpha$ -L-Rhali | 1          | 99.5              |
| 7        | 146.9            | CH                | 2                 | 72.9       | CH                |
| 8        | 112.0            | CH <sub>2</sub>   | 3                 | 76.9       | CH                |
| 9        | 12.9             | CH <sub>3</sub>   | 4                 | 75.8       | CH                |
| 10       | 28.8             | CH <sub>3</sub>   | 5                 | 67.6       | CH                |
| 6        | 18.1             | CH <sub>3</sub>   |                   |            |                   |

<sup>a</sup> Multiplicities were assigned from DEPT-45, DEPT-90 and DEPT-135 spectra.

57 with the molecular formula C<sub>82</sub>H<sub>132</sub>O<sub>40</sub>, bearing one monoterpene  
 58 and seven monosaccharide moieties. In addition to this, the IR  
 59 spectrum showed an absorption at 1643 cm<sup>-1</sup> which is typical of  
 60 an  $\alpha$ , $\beta$ -unsaturated carbonyl group, supported by UV absorption at  
 61 220 nm.

62 On acid hydrolysis, compound 1 gave a saponogen 1a, glucose  
 63 and rhamnose. The structure of 1a (Fig. 1) was established as  
 64 2,3,23-trihydroxy-(2 $\beta$ ,3 $\beta$ ,4 $\alpha$ )-olean-12-en-28-oic acid (bayo-  
 65 genin) by comparing its physical properties ([ $\alpha$ ]<sub>D</sub> and m.p.), and  
 66 <sup>1</sup>H and <sup>13</sup>C NMR spectra with those of known bayogenin (Eade  
 67 et al., 1963; Fujioka et al., 1989; Mahato and Kundu, 1994; Tan  
 68 et al., 1999). Analysis of the sugars by GC/MS indicated the  
 69 presence of rhamnose and glucose in a ratio of 2:5, respectively  
 70 (Kamerling et al., 1975). Their absolute configurations were  
 71 determined by GC of their trimethylsilylated (-)-2-butylglyco-  
 72 sides (Gerwig et al., 1978). D-Glucose and L-rhamnose were  
 73 detected. The <sup>1</sup>H NMR spectrum of compound 1 displayed seven  
 74 anomeric hydrogen atoms at  $\delta$  5.07 (d,  $J$  = 8.0 Hz), 5.20 (d,  
 75  $J$  = 8.0 Hz), 5.33 (d,  $J$  = 8.0 Hz), 6.09 (brs), 6.11 (d,  $J$  = 7.6 Hz), 6.26  
 76 (d,  $J$  = 8.4 Hz), 6.37 (brs) which gave correlations in the HSQC  
 77 spectrum with seven anomeric carbon atoms at  $\delta$  103.0, 106.6,  
 78 105.8, 101.9, 95.6, 105.7, 99.5, respectively. Evaluation of chemical  
 79 shifts and spin–spin couplings allowed the identification of two  
 80 rhamnopyranosyl units ( $\alpha$ -Rhal and  $\alpha$ -Rhali) and five  $\beta$ -glucopyr-  
 81 anosyl units ( $\beta$ -GlcI,  $\beta$ -GlcII,  $\beta$ -GlcIII,  $\beta$ -GlcIV and  $\beta$ -GlcV). The

82 attachments of the sugar moieties to the aglycone moiety were  
 83 established by <sup>1</sup>H–<sup>1</sup>H COSY and HMBC experiments. The COSY  
 84 spectrum was useful to establish couplings and determine the  
 85 connectivity information in carbohydrate sequences. The HMBC  
 86 spectrum displayed long range couplings between GlcI-H-1 at  $\delta$   
 87 5.07 and triterpenoid-C-3 at  $\delta$  83.2, between GlcIII-H-1 at  $\delta$  6.11  
 88 and triterpenoid-C-28 at  $\delta$  174.4, which accounted for two  
 89 saccharide part linkages to the C-3  $\beta$ -OH and C-28 COOH groups  
 90 of bayogenin. In addition to this, long range couplings were  
 91 observed between GlcII-H-1 at  $\delta$  5.33 and GlcI-C-2 at  $\delta$  83.6,  
 92 between GlcIV-H-1 at  $\delta$  6.26 and Rhal-C-3 at  $\delta$  82.2, between GlcV-  
 93 H-1 at  $\delta$  5.20 and Rhal-C-4 at  $\delta$  79.1, between Rhal-H-1 at  $\delta$  6.09 and  
 94 GlcIII-C-2 at  $\delta$  76.8, between Rhali-H-1 at  $\delta$  6.37 and GlcIII-C-6 at  $\delta$   
 95 66.9, between Rhali-H-4 at  $\delta$  5.86 and monoterpenoid-C-1 at  $\delta$   
 96 168.0, which accounted for the elucidation of compound 1 (Fig. 1).  
 97 The NMR signals of compound 1 were assigned by 2D NMR  
 98 experiments including COSY, HSQC and HMBC and by comparing  
 99 the NMR data of 1 (Table 1 and Exper. Part) with those reported in  
 100 the literature (Zhang et al., 1995a,b; Castro et al., 1997; Zhang et al.,  
 101 1999a,b,c; Tava et al., 2005).

102 On mild alkaline hydrolysis compound 1 afforded compound  
 103 1b. By comparing UV, IR, <sup>1</sup>H and <sup>13</sup>C NMR and MS spectral data of  
 104 compound 1b with those reported in the literature (Okada et al.,  
 105 1980; Zhang et al., 1999a), 1b was identified as (2E,6S)-6-hydroxy-  
 106 2,6-dimethyl-2,7-octadienoic acid (Fig. 1). The stereochemistry at

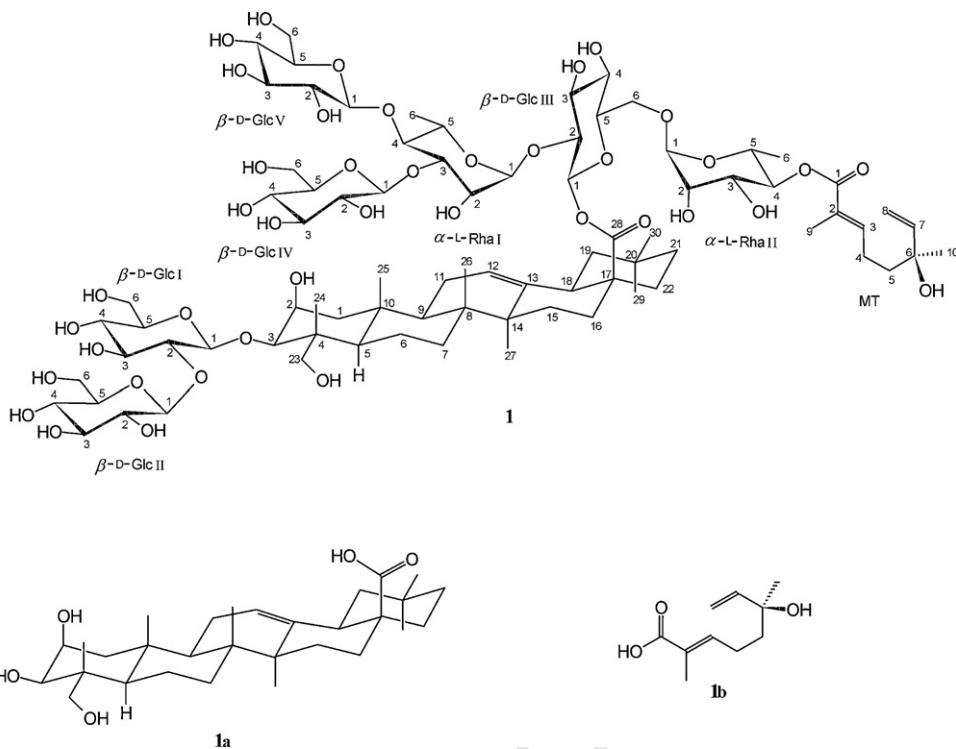



Fig. 1. Chemical structures of compounds 1, 1a and 1b.

C-6 of **1b** was assigned to be *S* by comparing its optical activity,  $[\alpha]_D^{25} +18$  (*c* 0.65,  $\text{CHCl}_3$ ) with that reported in the literature (Okada et al., 1980).

The sequence of sugar chain of compound **1** was confirmed by methylation analysis (Parente et al., 1985) which furnished 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol, 1,4,5-tri-O-acetyl-2,3-di-O-methyl rhamnitol, 1,2,5-tri-O-acetyl-3,4,6-tri-O-methyl glucitol, 1,3,4,5-tetra-O-acetyl-2-mono-O-methyl rhamnitol and 1,2,5,6-tetra-O-acetyl-3,4-di-O-methyl glucitol. Consequently, on the basis of the results described above, the structure of compound **1** was established as 3-[(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]-2,23-dihydroxy-(2β,3β,4α)-olean-12-en-28-oic acid

**1**  $O\text{-}\beta\text{-D-glucopyranosyl-(1}\rightarrow 3\text{)}\text{-O}\text{-}\beta\text{-D-glucopyranosyl-(1}\rightarrow 4\text{)}\text{-O-6-deoxy-}\alpha\text{-L-mannopyranosyl-(1}\rightarrow 2\text{)}\text{-6-O-}[4\text{-O-}[(2E,6S)\text{-2,6-dimethyl-1-oxo-2,7-octadienyl}\text{-}6\text{-deoxy-}\alpha\text{-L-mannopyranosyl]oxy}\text{-}\beta\text{-D-glucopyranosyl ester (1; Fig. 1).}$

Because the original observation that certain saponins cause substantial enhancement of immune responses when given together with an antigen in a vaccine, their use as adjuvants received special attention (Sun et al., 2009). Indeed, QS-21, a complex triterpenoid saponin isolated from the bark of the South American tree *Quillaja saponaria* shows an outstanding and specific adjuvant potential and was recently synthesized (Kim et al., 2006). It has been evaluated in a large number of vaccines in Phase I and Phase II human clinical trials. These vaccines include several cancer immunotherapeutics, formulations with recombinant glycoprotein vaccine against HIV-1 and with synthetic *Plasmodium falciparum* peptides against malaria (Fig. 2). It has been tested in more than 3000 individuals and appears to be a promising adjuvant for human vaccines (Waite et al., 2001). In order to investigate the biological properties of compound **1**, it was evaluated for haemolytic activity *in vitro* and compared with adjuvants commonly used in animal and human experimental models (Fig. 3), showing a powerful haemolytic potential similar to the purified saponin QS-21 obtained from commercial extracts of *Quillaja saponaria* (Santos et al., 1997).

In addition, the immunological property of compound **1** was investigated and its adjuvant potential on the cellular immune response against ovalbumin (OVA) antigen was evaluated (Fig. 4). Delayed type hypersensitivity (DTH) reaction was measured as an *in vivo* assay of cellular immune response. This type of immunity is typically elicited by soluble protein antigens that are introduced with adjuvants. In the classical experimental model, the animal is first immunized by the administration of the antigen conjugated with adjuvants, which is called sensitization. After, in the elicitation stage, the animal is challenged subcutaneously with the same antigen and the subsequent reaction is analyzed. In this study, mice immunized with OVA conjugated with compound **1** showed response greater than those when the antigen was

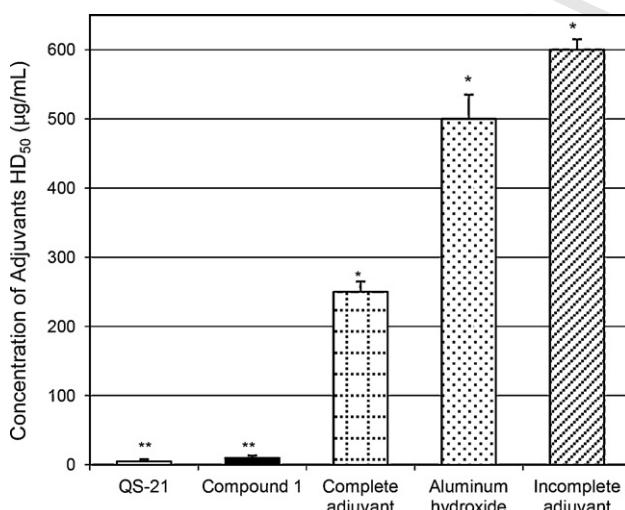
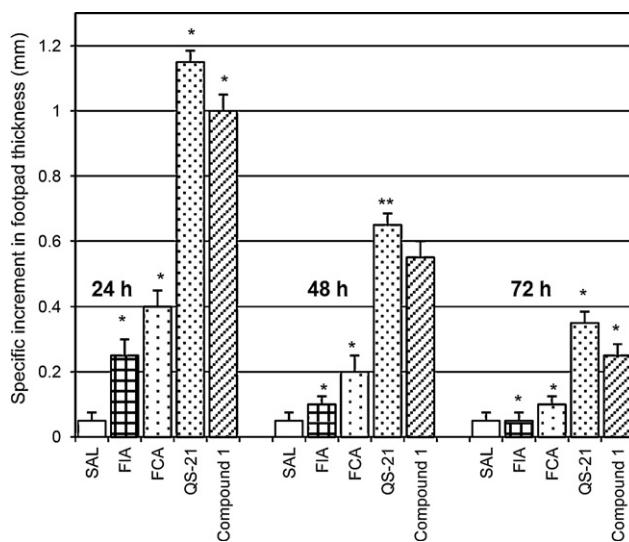




Fig. 2. Haemolytic activity ( $\mu\text{g/mL}$ ) of compound **1** and commercial adjuvants commonly used in animal and human experimental models. The adjuvant concentration inducing 50% of the maximal haemolysis was considered the median haemolytic dose ( $\text{HD}_{50}$ ; graphical interpolation). Each experiment included triplicates at each concentration. Results are mean  $\pm$  S.E.M. ( $n = 10$ ); \* $p < 0.05$ , \*\* $p < 0.01$  significantly different from the control.



**Fig. 3.** Immunological adjuvant activity of compound **1** and commercial adjuvants on the cellular immune response against ovalbumin antigen. Delayed type hypersensitivity responses after two subcutaneous immunizations with 100 (g of ovalbumin and 100 (g of each adjuvant. Results are mean  $\pm$  S.E.M. ( $n = 5$ ); \* $p < 0.05$ , \*\* $p < 0.01$  significantly different from the saline control. Student's *t*-test. Abbreviations: SAL, saline solution; FCA, Freund's complete adjuvant; FIA, Freund's incomplete adjuvant; QS-21, purified *Quillaja saponaria* saponin.

156 combined with commercial adjuvants. This response developed  
157 rapidly after immunization and persisted at high levels for at least  
158 three days (Mowat et al., 1991).

159 The structural similarities between compound **1** and other  
160 bioactive complex triterpenoid saponins isolated from medicinal  
161 plants may help to explain its immunological activity (Lacaille-  
162 Dubois and Wagner, 1996). For example, the sugar side chain at C-  
163 28 may be responsible for the activation of the cellular immune  
164 response, since this residue is shared by the adjuvant saponin  
165 isolated from *Calliandra pulcherrima* and its removal by hydrolysis  
166 reactions abolished this activity, indicating that the integrity of the  
167 carbohydrate moiety attached at that position is mandatory for the  
168 these functions (Sun et al., 2009). Moreover, it was proved that the  
169 remarkable property of *Quillaja saponaria* to stimulate lymphocyte  
170 proliferation appears to depend on their lipophilic acylated moiety  
171 in molecular structure, since this property was significantly  
172 diminished after the removal of the monoterpenic units, which  
173 implies that these residues play a pivotal role in the adjuvant  
174 activity (Marciani, 2003). Specially, the overall conformation  
175 harmoniously constructed by both hydrophilic and hydrophobic  
176 functional groups, rather than each individual functional group  
177 itself, is the most essential element for the consideration of  
178 adjuvant activity (Sun et al., 2009). In conclusion, the investigation  
179 of the biological properties of compound **1** indicated that this  
180 substance may be the potential therapeutic agent involved in the  
181 immunomodulatory activity, justifying the use of *S. saman* in the  
182 traditional medicine.

### 183 3. Experimental

#### 184 3.1. General experimental procedures

185 Carbohydrate content was analyzed by gas chromatography-  
186 electron impact mass spectrometry (GC-EIMS) of the alditol  
187 Q4 acetates (Sawardeker et al., 1985). The experimental data were  
188 tested for statistical differences using the Student's *t*-test. Melting  
189 points were determined by an Electrothermal 9200 micro-melting  
190 point apparatus and are uncorrected. The optical rotations were  
191 measured on a Perkin Elmer 243B polarimeter. IR spectra were

measured on a Perkin Elmer FT-IR 1600 spectrometer.  $^1\text{H}$  and  $^{13}\text{C}$  NMR, DEPT, COSY, HSQC and HMBC experiments were performed in deuterated pyridine on a Mercury-300 NMR spectrometer (300 MHz for  $\delta_{\text{H}}$  and 75 MHz for  $\delta_{\text{C}}$ ). All chemical shifts ( $\delta$ ) are given in ppm units with reference to tetramethylsilane (TMS) as the internal standard and the coupling constants ( $J$ ) are in Hz. Gas chromatography (GC) was carried out with flame ionization detector (FID), using a glass capillary column WCOT SE-30 (0.31 mm  $\times$  25 m; 0.25  $\mu\text{m}$  film thickness) using the following temperature programme for splitless injection mode: 60–250 °C (5 °C/min), and the detector temperature at 270 °C. GC-EIMS were taken on a VG Auto SpecQ spectrometer operating at 70 eV. The MALDI-TOFMS was obtained using a Perseptive Voyager RP mass spectrometer. Silica gel columns (230–400 mesh ASTM, Merck) and Sephadex LH-20 (Pharmacia) were used for column chromatography (CC). Thin-layer chromatography (TLC) was performed on silica gel coated plates (Merck) using the following solvent systems: (A)  $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$  (65:35:10, v/v/v, lower phase) for triterpenoid saponin **1**, (B)  $\text{CHCl}_3\text{-MeOH}$  (95:5, v/v) for saponin **1a**, (C)  $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$  (8:3:1, v/v/v) for monoterpenoid **1b** and (D)  $n\text{-BuOH-acetone-H}_2\text{O}$  (4:5:1, v/v/v) for monosaccharides. Spray reagents were orcinol/ $\text{H}_2\text{SO}_4$  for triterpenoid saponin **1** and monosaccharides and  $\text{CeSO}_4$  for saponin **1a** and monoterpenoid **1b**.

#### 216 3.2. Plant material

217 Stem barks of *S. saman* (Jacq.) Merr. were collected from the  
218 Botanical Garden of the Federal University of Rio de Janeiro (Rio de  
219 Janeiro, Brazil) in February 2009.

#### 220 3.3. Extraction and isolation

221 Fresh stem barks of *S. saman* (100 g), previously cut into small  
222 pieces, were extracted with MeOH (300 mL) for 72 h at r.t. and the  
223 extract was concentrated under reduced pressure. The residue  
224 (9.21 g) was suspended in water (200 mL), the suspension was  
225 extracted with *n*-BuOH (200 mL). The resulting organic phase was  
226 evaporated *in vacuo* to give a crude material (3.57 g). This residue  
227 was dissolved in MeOH (60 mL) and EtOAc (300 mL) was added to  
228 the MeOH solution to give a precipitate. After setting for 72 h at r.t.,  
229 the supernatant was decanted off. The precipitate was suspended  
230 in MeOH (50 mL) and concentrated *in vacuo* to give a dry residue  
231 (1.54 g). It was dissolved in MeOH (20 mL) and chromatographed  
232 by column chromatography over Sephadex LH-20 (3.8 cm  $\times$  65 cm)  
233 using MeOH as eluent to yield 60 fractions (23 mL each one). The fractions containing saponin (19–21) were  
234 evaporated *in vacuo* to give an impure saponin (1.39 g). It was  
235 further purified by column chromatography over silica gel  
236 (2.8 cm  $\times$  95 cm), using  $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$  (65:35:10, lower  
237 phase) as eluent to afford compound **1** (792 mg).

238 3.4. 3-[ $(2\text{-O-}\beta\text{-D-glucopyranosyl-}\beta\text{-D-glucopyranosyl})\text{oxy-}$ ]2,23-  
239 dihydroxy- $(2\beta,3\beta,4\alpha)\text{-olean-12-en-28-oic acid O-}\beta\text{-D-}$   
240 glucopyranosyl- $(1 \rightarrow 3)\text{-O-[O-}\beta\text{-D-glucopyranosyl-}(1 \rightarrow 4)\text{-O-6-}$   
241 deoxy- $\alpha\text{-L-mannopyranosyl-}(1 \rightarrow 2)\text{-6-O-[4-O-}[2\text{E,6S)-2,6-}$   
242 dimethyl-1-oxo-2,7-octadienyl]-6-deoxy- $\alpha\text{-L-mannopyranosyl}\text{oxy-}$   
243  $\beta\text{-D-glucopyranosyl ester (1)}$

244 Colorless amorphous powder (792 mg); m.p. 284–288 °C (dec.);  
245  $[\alpha]_{\text{D}}^{25} +33$  (c 0.6, MeOH); UV  $\lambda_{\text{max}}$  (nm): 220; IR (KBr)  $\nu_{\text{max}}$   $\text{cm}^{-1}$ :  
246 3420 (OH), 2929 (CH), 1713 (C=O), 1643 (C=O);  $^1\text{H}$  NMR ( $\text{C}_5\text{D}_5\text{N}$ ,  
247 300 MHz)  $\delta$  7.02 (1H, dt,  $J = 7.6, 1.5$  Hz, MT-H-3), 6.37 (1H, brs,  
248 Rhall-H-1), 6.26 (1H, d,  $J = 8.4$  Hz, GlcIV-H-1), 6.11 (1H, d,  $J = 7.6$  Hz,  
249 GlcIII-H-1), 6.09 (1H, brs, Rhal-H-1), 6.07 (1H, dd,  $J = 17.1, 10.8$  Hz,  
250 MT-H-7), 5.86 (1H, t,  $J = 10.0$  Hz, Rhall-H-4), 5.53 (1H, dd,  $J = 17.1,$   
251

1.8 Hz, MT-H-8b), 5.41 (1H, *brs*, H-12), 5.33 (1H, *d*, *J* = 8.0 Hz, GlcII-H-1), 5.20 (1H, *d*, *J* = 8.0 Hz, GlcV-H-1), 5.15 (1H, *dd*, *J* = 10.8, 1.8 Hz, MT-H-8a), 5.07 (1H, *d*, *J* = 8.0 Hz, GlcI-H-1), 4.61 (1H, *brs*, H-2), 4.41 (1H, *d*, *J* = 11.0 Hz, H-23b), 4.33 (1H, *d*, *J* = 3.0 Hz, H-3), 3.72 (1H, *d*, *J* = 11.0 Hz, H-23a), 2.60 (2H, *m*, MT-H-4), 1.88 (3H, *s*, MT-Me-9), 1.70 (2H, *t*, *J* = 6.6 Hz, MT-H-5), 1.58 (3H, *s*, Me-25), 1.52 (3H, *s*, Me-24), 1.45 (3H, *s*, MT-Me-10), 1.24 (3H, *s*, Me-27), 1.10 (3H, *s*, Me-26), 0.95 (3H, *s*, Me-29), 0.88 (3H, *s*, Me-30).  $^{13}\text{C}$  NMR ( $\text{C}_5\text{D}_5\text{N}$ , 75 MHz): see Table 1. MALDI-TOFMS *m/z*: 1780, 9013 [M+Na]<sup>+</sup> (calcd for  $\text{C}_{82}\text{H}_{132}\text{NaO}_{40}^+$ , 1780, 9106).

### 262 3.5. Acid hydrolysis of compound 1

263 Compound 1 (100 mg) was dissolved in 1,4-dioxane/1 N  $\text{H}_2\text{SO}_4$  264 1:1 (10 mL) and heated in a sealed tube at 100 °C during 1 h. After 265 dilution with water (10 mL), the reaction mixture was extracted 266 with diethyl ether. The ether layer was evaporated to dryness. The 267 residue was recrystallized from MeOH-CHCl<sub>3</sub> to give the sapogenin 268 (1a, 19 mg) as colorless needles, m.p. 320–322 °C (dec.),  $[\alpha]_D^{25}$  269 +127 (c 0.67, pyridine). The water layer was passed through an 270 Amberlite IRA-410 column. The eluate was concentrated to give a 271 residue containing the monosaccharide mixture (52 mg). A sample 272 of the monosaccharide mixture (1 mg) was dissolved in pyridine 273 (100  $\mu\text{L}$ ) and analyzed by TLC and compared with standards of 274 sugars.

### 275 3.6. Mild alkaline hydrolysis of compound 1

276 To a solution of compound 1 (50 mg) in dioxane (6 mL) was 277 added 1% KOH (6 mL), and the mixture was stirred at 0 °C for 3 h 278 under an inert atmosphere. The reaction mixture was acidified 279 with 10% HCl and extracted with CHCl<sub>3</sub>. The CHCl<sub>3</sub> solution was 280 washed with H<sub>2</sub>O and evaporated to dryness. The residue (4.3 mg) 281 was chromatographed on a silica gel column (1 × 30 cm) eluted 282 with *n*-hexane-acetone (4:1, v/v) to afford the oily monoterpene 283 carboxylic acid (1b; 2.7 mg).  $[\alpha]_D^{25}$  +18 (c 0.65, CHCl<sub>3</sub>).

### 284 3.7. Molar carbohydrate composition and D,L configurations

285 The molar carbohydrate composition of compound 1 (1 mg) 286 was determined by GC-MS analyses of their monosaccharides as 287 their trimethylsilylated methylglycosides obtained after methanolysis 288 (0.5 M HCl in MeOH, 24 h, 80 °C) and trimethylsilylation 289 (Kamerling et al., 1975). The configurations of the glycosides were 290 established by capillary GC and GC-EIMS of their trimethylsilylated 291 (–)-2-butylglycosides (Gerwig et al., 1978).

### 292 3.8. Methylation analysis

293 Compound 1 (1 mg) was dissolved in dimethylsulfoxide 294 (200  $\mu\text{L}$ ) in a Teflon-lined screw-cap tube. Lithium methylsulfonyl 295 carbanion (200  $\mu\text{L}$ ) was added to the solution under an inert 296 atmosphere and the mixture was sonicated for 60 min. After 297 cooling to –4 °C, cold methyl iodide (400  $\mu\text{L}$ ) was added. 298 Sonication was conducted in a sonication bath (20 °C) for 299 45 min. The methylation was terminated by addition of water 300 (4 mL) containing sodium thiosulfate, and the permethylated 301 product extracted with chloroform (3 × 2 mL) and evaporated 302 (Parente et al., 1985). The methyl ethers were obtained after 303 hydrolysis (4 N TFA, 2 h, 100 °C) and analyzed as alditol acetates by 304 GC-EIMS (Sawardeker et al., 1965).

### 305 3.9. Haemolytic activity

306 Normal human red blood cell suspension (0.5 mL of 0.5%) was 307 mixed with 0.5 mL of diluent containing 5, 10, 20, 30, 40, 50, 100,

250 and 500  $\mu\text{g}/\text{mL}$  of compound 1, Al(OH)<sub>3</sub>, purified *Quillaja* 251 *saponaria* saponin (QS-21), and 5–500  $\mu\text{g}/\text{mL}$  of Freund's Complete 252 Adjuvant (FCA) and Freund's Incomplete Adjuvant (FIA) in saline 253 solution. Mixtures were incubated for 30 min at 37 °C and 254 centrifuged at 70 × g for 10 min. The free haemoglobin in the 255 supernatant was measured by absorbance at 412 nm. Saline and 256 distilled water were included as minimal and maximal haemolytic 257 controls, respectively. The haemolytic percents developed by the 258 saline control were subtracted from all groups. The adjuvant 259 concentration inducing 50% of the maximal haemolysis was 260 considered the median haemolytic dose ( $HD_{50}$ ; graphical interpolation). 261 Each experiment included triplicates at each concentration 262 (Santos et al., 1997).

### 263 3.10. Immunological adjuvant activity

264 Male Swiss mice (three months old) were subcutaneously 265 immunized twice at weekly intervals with 100  $\mu\text{g}$  ovalbumin 266 antigen (OVA) dissolved in 100  $\mu\text{L}$  sterile saline (SAL) as the 267 negative control group or with 100  $\mu\text{g}$  of OVA mixed with 100  $\mu\text{g}$  268 of compound 1 or Freund's Complete Adjuvant (FCA) or Freund's 269 Incomplete Adjuvant (FIA) as the positive control groups, each one 270 dissolved in 100  $\mu\text{L}$  of saline as vehicle. A reference compound, the 271 commercial purified *Quillaja saponaria* saponin (QS-21) 100  $\mu\text{g}$  272 was mixed with 100  $\mu\text{g}$  of the antigen (OVA) and dissolved in 273 100  $\mu\text{L}$  of saline, for comparison. The delayed-type hypersensitivity 274 (DTH) responses were assessed by measuring the increment in 275 the right footpad thickness after subcutaneous challenge with 276 100  $\mu\text{g}$  OVA in 100  $\mu\text{L}$  saline a week after the second immunization. 277 The footpad thickness was measured with a spring-loaded 278 dial gauge (Mitutoyo Corp., Tokyo, Japan) before and 24, 48 and 279 72 h after injection. Injecting each animal with 100  $\mu\text{L}$  saline in the 280 left hind footpad served as control. The ovalbumin specific 281 responses were obtained by subtracting the response to OVA 282 challenge in unimmunized control mice (Mowat et al., 1991).

### 283 Acknowledgements

284 This work was financially supported by FINEP, CAPES and CNPq.

### 285 References

286 Castro, V.H., Ramirez, E., Mora, G.A., Iwase, Y., Nagao, T., Okabe, H., Matsunaga, H., Katano, M., Mori, M., 1997. Structures and antiproliferative activity of saponins from *Sechium pittieri* and *S. talamanicense*. *Chem. Pharm. Bull.* 45, 349–358.

287 Durr, P.A., 2001. The biology, ecology and agroforestry potential of the raintree, *Samanea saman* (Jacq.) Merr. *Agroforest. Syst.* 51, 223–237.

288 Eade, R.A., Simes, J.J.H., Stevenson, B., 1963. Extractives of Australian timbers IV. Castanogenin (medicagenic acid) and bayogenin,  $\text{C}_{30}\text{H}_{48}\text{O}_5$ , from *Castanospermum austre* Cunn. et Fras. *Aust. J. Chem.* 16, 900–905.

289 Fujioka, T., Iwamoto, M., Iwase, Y., Hachiya, S., Okabe, H., Yamauchi, T., Mihashi, K., 1989. Studies on the constituents of *Actinostema lobatum* Maxim. V. Structures of lobatosides B, E, F and G, the dicrotalic acid esters of bayogenin bisdesmosides isolated from the herb. *Chem. Pharm. Bull.* 37, 2355–2360.

290 Gerwig, G.J., Kamerling, J.P., Vliegenthart, J.F.G., 1978. Determination of the D and L configuration of neutral monosaccharides by high-resolution capillary G.L.C. *Carbohydr. Res.* 62, 349–357.

291 ILDIS International Legume Database & Information Service, 2005. <http://www.ildis.org/LegumeWeb?version~10.01&LegumeWeb&tno~158&genus~Albizia&species~saman#151>.

292 Kamerling, J.P., Gerwig, G.J., Vliegenthart, J.F.G., Clamp, J.R., 1975. Characterization by gas-liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of permethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides. *Biochem. J.* 151, 491–495.

293 Kim, Y.-J., Wang, P., Navarro-Villalobos, M., Rohde, B.D., Derryberry, J.M., Gin, D.Y., 2006. Synthetic Studies of Complex Immunostimulants from *Quillaja saponaria*: Synthesis of the Potent Clinical Immunoadjuvant QS-21Aapi. *J. Am. Chem. Soc.* 128, 11906–11915.

294 Lacaille-Dubois, M.A., Wagner, H., 1996. A review of the biological and pharmacological activities of saponins. *Phytomedicine* 2, 363–383.

295 Mahato, S.B., Kundu, A.P., 1994. NMR spectra of pentacyclic triterpenoids – a compilation and some salient features. *Phytochemistry* 35, 1515–1575.

374 Marciani, D.J., 2003. Vaccine adjuvants: role and mechanisms of action in vaccine  
375 immunogenicity. *Drug Discov. Today* 8, 934–943. 400  
376 Mowat, A.M., Donachie, A.M., Reid, G., Jarrett, O., 1991. Immune-stimulating complexes  
377 containing Quil A and protein antigen prime class I MHC-restricted T 401  
378 lymphocytes *in vivo* and are immunogenic by the oral route. *Immunology* 72, 402  
379 317–322. 403  
380 Oda, K., Matsuda, H., Murakami, T., Katayama, S., Ohgitani, T., Yoshikawa, M., 2000. 404  
381 Adjuvant and haemolytic activities of saponins derived from medicinal and food 405  
382 plants. *Biol. Chem.* 381, 67–74. 406  
383 Okada, Y., Koyama, K., Takahashi, K., Okuyama, T., Shibata, S., 1980. *Gleditsia* 407  
384 saponins I. Structures of monoterpene moieties of *Gleditsia saponin C*. *Planta* 408  
385 *Med.* 40, 185–192. 409  
386 Parente, J.P., Cardon, P., Leroy, Y., Montreuil, J., Fournet, B., Ricart, G., 1985. A 410  
387 convenient method for methylation of glycoprotein glycans in small amounts 411  
388 by using lithium methylsulfinyl carbanion. *Carbohydr. Res.* 141, 41–47. 412  
389 Prasad, R.N., Viswanathan, S., Devi, J.R., Nayak, V., Swetha, V.C., Archana, B.R., 413  
390 Parathasarathy, N., Rajkumar, J., 2008. Preliminary phytochemical 414  
391 screening and antimicrobial activity of *Samanea saman*. *J. Med. Plant. Res.* 415  
392 2, 268–270. 416  
393 Santos, W.R., Bernardo, R.R., Peçanha, L.M.T., Palatnik, M., Parente, J.P., de Sousa, 417  
394 C.B.P., 1997. Haemolytic activities of plant saponins and adjuvants. Effect of 418  
395 *Periandra mediterranea* saponin on the humoral response to the FML antigen of 419  
396 *Leishmania donovani*. *Vaccine* 15, 1024–1029. 420  
397 Sawardeker, J.S., Sloneker, J.H., Jeanes, A., 1965. Quantitative determination of 421  
398 monosaccharides as their alditol acetates by gas liquid chromatography. *Anal.* 422  
399 *Chem.* 37, 1602–1604. 423  
400 Sun, H.-X., Xie, Y., Ye, Y.-P., 2009. Advances in saponin-based adjuvants. *Vaccine* 27, 424  
401 1787–1796. 425  
402 Tan, N., Zhou, J., Zhao, S., 1999. Advances in structural elucidation of glucuronide 426  
403 oleanane-type triterpene carboxylic acid 3, 28-O-bidesmosides (1962–1997). 427  
404 *Phytochemistry* 52, 153–192. 428  
405 Tava, A., Mella, M., Avato, P., Argentieri, M.P., Bialy, Z., Jurzysta, M., 2005. Triterpenoid 429  
406 glycosides from leaves of *Medicago arborea* L. *J. Agric. Food Chem.* 53, 430  
407 9954–9965. 431  
408 Waite, D.C., Jacobson, E.W., Ennis, F.A., Edelman, R., White, B., Kammer, R., Anderson, 432  
409 C., Kensil, C.R., 2001. Three double-blind, randomized trials evaluating the 433  
410 safety and tolerance of different formulations of the saponin adjuvant QS-21. 434  
411 *Vaccine* 19, 3957–3967. 435  
412 Zhang, D., Miyase, T., Kuroyanagi, M., Umehara, K., Ueno, A., 1995a. Studies on the 436  
413 constituents of *Polygala japonica* Hout. I. Structures of polygalasaponins I–X. 437  
414 *Chem. Pharm. Bull.* 43, 115–120. 438  
415 Zhang, D., Miyase, T., Kuroyanagi, M., Umehara, K., Ueno, A., 1995b. Studies on the 439  
416 constituents of *Polygala japonica* Hout. II. Structures of polygalasaponins XI– 440  
417 XIV. *Chem. Pharm. Bull.* 43, 966–970. 441  
418 Zhang, Z., Koike, K., Jia, Z., Nikaido, T., Guo, D., Zheng, J., 1999a. Four new triterpenoid 442  
419 saponins acylated with one monoterpenic acid from *Gleditsia sinensis*. *J. 443  
420 Nat. Prod.* 62, 740–745. 444  
421 Zhang, Z., Koike, K., Jia, Z., Nikaido, T., Guo, D., Zheng, J., 1999b. *Gleditsiosides N–Q*, 445  
422 new triterpenoid saponins from *Gleditsia sinensis*. *J. Nat. Prod.* 62, 877–881. 446  
423 Zhang, Z., Koike, K., Jia, Z., Nikaido, T., Guo, D., Zheng, J., 1999c. Triterpenoidal 447  
424 saponins acylated with two monoterpenic acids from *Gleditsia sinensis*. *Chem. 448  
425 Pharm. Bull.* 47, 388–393. 449  
450